Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 52(4): 2119-24, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23373599

RESUMO

To explore the effect of delocalization in the Fe(NO)(2) unit on possible linkage isomerism of ambidentate ECN(-) ligands, E = S and O, anionic DNICs, dinitrosyl iron complexes, (SCN)(2)Fe(NO)(2)(-) (1) and (OCN)(2)Fe(NO)(2)(-) (2) were synthesized by the reaction of in situ-generated [Fe(CO)(2)(NO)(2)](+) and PPN(+)ECN(-). Other {Fe(NO)(2)}(9) (Enemark-Feltham notation) complexes, (N(3))(2)Fe(NO)(2)(-) and (PhS)(2)Fe(NO)(2)(-), were prepared for comparison. The X-ray diffraction analysis of 1 and 2 yielded the typical tetrahedral structures of DNICs with two slightly bent Fe-N-O oriented toward each other, and linear FeNCE units. The ν(NO) IR values shift to lower values for 1 > 2 > (N(3))(2)Fe(NO)(2)(-) > (PhS)(2)Fe(NO)(2)(-), reflecting the increasing donor ability of the ancillary ligands and consistent with the redox potentials of the complexes, and the small trends in Mössbauer isomer shifts. Computational studies corroborate that the {Fe(NO)(2)}(9) motif prefers N-bound rather than E-bound isomers. The calculated energy differences between the linkage isomers of 1 (Fe-NCS preferred over Fe-SCN by about 6 kcal/mol) are smaller than those of 2 (Fe-NCO preferred over Fe-OCN by about 16 kcal/mol), a difference that is justified by the frontier molecular orbitals of the ligands themselves.

2.
J Am Chem Soc ; 134(31): 13089-102, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22774845

RESUMO

The compounds of this study have yielded to complementary structural, spectroscopic (Mössbauer, EPR/ENDOR, IR), and computational probes that illustrate the fine control of electronic and steric features that are involved in the two structural forms of (µ-SRS)[Fe(CO)2PMe3]2(0,+) complexes. The installation of bridgehead bulk in the -SCH2CR2CH2S- dithiolate (R = Me, Et) model complexes produces 6-membered FeS2C3 cyclohexane-type rings that produce substantial distortions in Fe(I)Fe(I) precursors. Both the innocent (Fc(+)) and the noninnocent or incipient (NO(+)/CO exchange) oxidations result in complexes with inequivalent iron centers in contrast to the Fe(I)Fe(I) derivatives. In the Fe(II)Fe(I) complexes of S = 1/2, there is complete inversion of one square pyramid relative to the other with strong super hyperfine coupling to one PMe3 and weak SHFC to the other. Remarkably, diamagnetic complexes deriving from isoelectronic replacement of CO by NO(+), {(µ-SRS)[Fe(CO)2PMe3] [Fe(CO)(NO)PMe3](+)}, are also rotated and exist in only one isomeric form with the -SCH2CR2CH2S- dithiolates, in contrast to R = H ( Olsen , M. T. ; Bruschi , M. ; De Gioia , L. ; Rauchfuss , T. B. ; Wilson , S. R. J. Am. Chem. Soc. 2008 , 130 , 12021 -12030 ). The results and redox levels determined from the extensive spectroscopic analyses have been corroborated by gas-phase DFT calculations, with the primary spin density either localized on the rotated iron in the case of the S = 1/2 compound, or delocalized over the {Fe(NO)} unit in the S = 0 complex. In the latter case, the nitrosyl has effectively shifted electron density from the Fe(I)Fe(I) bond, repositioning it onto the spin coupled Fe-N-O unit such that steric repulsion is sufficient to induce the rotated structure in the Fe(II)-{Fe(I)((•)NO)}(8) derivatives.


Assuntos
Hidrogenase/química , Proteínas Ferro-Enxofre/química , Ferro/química , Monóxido de Carbono/química , Simulação por Computador , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Ferrosos/química , Modelos Moleculares , Óxido Nítrico/química , Teoria Quântica , Espectrofotometria Infravermelho , Espectroscopia de Mossbauer , Relação Estrutura-Atividade
3.
J Am Chem Soc ; 133(50): 20426-34, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22074010

RESUMO

Imidazolate-containing {Fe(NO)(2)}(9) molecular squares have been synthesized by oxidative CO displacement from the reduced Fe(CO)(2)(NO)(2) precursor. The structures of complex 1 [(imidazole)Fe(NO)(2)](4), (Ford, Li, et al.; Chem. Commun.2005, 477-479), 2 [(2-isopropylimidazole)Fe(NO)(2)](4), and 3 [(benzimidazole)Fe(NO)(2)](4), as determined by X-ray diffraction analysis, find precise square planes of irons with imidazolates bridging the edges and nitrosyl ligands capping the irons at the corners. The orientation of the imidazolate ligands in each of the complexes results in variations of the overall structures, and molecular recognition features in the available cavities of 1 and 3. Computational studies show multiple low energy structural isomers and confirm that the isomers found in the crystallographic structures arise from intermolecular interactions. EPR and IR spectroscopic studies and electrochemical results suggest that the tetramers remain intact in solution in the presence of weakly coordinating (THF) and noncoordinating (CH(2)Cl(2)) solvents. Mössbauer spectroscopic data for a set of reference dinitrosyl iron complexes, reduced {Fe(NO)(2)}(10) compounds A ((NHC-iPr)(2)Fe(NO)(2)), and C ((NHC-iPr)(CO)Fe(NO)(2)), and oxidized {Fe(NO)(2)}(9) compounds B ([(NHC-iPr)(2)Fe(NO)(2)][BF(4)]), and D ((NHC-iPr)(SPh)Fe(NO)(2)) (NHC-iPr = 1,3-diisopropylimidazol-2-ylidene) demonstrate distinct differences of the isomer shifts and quadrupole splittings between the oxidized and reduced forms. The reduced compounds have smaller positive isomer shifts as compared to the oxidized compounds ascribed to the greater π-backbonding to the NO ligands. Mössbauer data for the tetrameric complexes 1-3 demonstrate larger isomer shifts, most comparable to compound D; all four complexes contain cationic {Fe(NO)(2)}(9) units bound to one anionic ligand and one neutral ligand. At room temperature, the paramagnetic, S = (1)/(2) per iron, centers are not coupled.


Assuntos
Imidazóis/química , Ferro/química , Óxidos de Nitrogênio/química , Espectroscopia de Mossbauer/métodos , Cristalografia por Raios X , Ligantes , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Inorg Chem ; 50(17): 8532-40, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21819054

RESUMO

The biochemical and physiological importance of nitric oxide (NO) in signaling and vasodilation has been studied for several decades. The discovery of both protein-bound and free low molecular weight dinitrosyl iron complexes (DNICs) suggests that such compounds might play roles in biological NO storage and transport. These complexes have important distinguishing spectroscopic features, including EPR and Mössbauer spectra, and NO vibrational frequencies (ν((NO))). The latter are particularly sensitive to modifications of the ligand environment and metal oxidation states. Examinations of functionals and basis sets delineate their effect on the NO vibrational frequencies and allow development of a methodology to calculate these frequencies in other DNICs. Three complexes of the form (L)(CO)Fe(NO)(2) (L = CO, N,N'-dimethyl-imidazol-2-ylidene (IMe) or 1-methylimidazole (MeImid)), where {Fe(NO)(2)}(10) is in its reduced form, have been used to calibrate the vibrational frequencies. The functional BP86 paired with a basis set of SDD/ECP on the metal and 6-311++G(d,p) on the ligand atoms exhibits the most accurate results, with deviations from experimental vibrational frequencies of no more than ±40 cm(-1). Subsequent investigations were performed on a series of diiron trinitrosyl complexes of the form {Fe(NO)}(7)-{Fe(NO)(2)}(9) bridged by sulfurs, namely, [(ON)Fe(µ-S,S-C(6)H(4))(2)Fe(NO)(2)](-), [Fe(NO)(2){Fe(NS(3))(NO)}-µ-S,S'], and [(ON)Fe(bme-dach)Fe(NO)(2)-µ-S,S'](+), with the ideal functional/basis set pair determined via the aforementioned test set. The ground state energetics (singlet/triplet/singlet, respectively), geometric parameters, and nitrosyl vibrational frequencies were calculated. The results for the former two complexes correlated well with the experimental work, and in contrast with what was reported in an earlier computational study, a stable triplet ground state structure was optimized for [Fe(NO)(2){Fe(NS(3))(NO)}-µ-S,S']. For [(ON)Fe(bme-dach)Fe(NO)(2)-µ-S,S'](+), whose synthesis and structure were recently reported, the geometric parameters, vibrational frequencies, and total energies compare well to experimental ones and favor a singlet ground state.


Assuntos
Compostos Férricos/química , Modelos Moleculares , Óxidos de Nitrogênio/química , Teoria Quântica , Vibração , Estrutura Molecular , Estereoisomerismo
5.
Dalton Trans ; 40(22): 6047-53, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21552576

RESUMO

The reaction of Fe(CO)(2)(NO)(2) and Ni(N(2)S(2)) (N(2)S(2) = N,N'-Bis(2-mercaptoethyl)-1,4-diazacycloheptane) by a single CO replacement yields [Ni(N(2)S(2))]Fe(NO)(2)(CO), while an excess of Fe(CO)(2)(NO)(2) leads to triply bridging thiolate sulphurs in a cluster of core composition Ni(2)S(4)Fe(3), lacking one Fe(NO)(2) unit to complete the adamantane-like structure. This structural type was earlier identified in a Cu(I)Cl aggregate of M(II)(N(2)S(2)) (M(II) = Ni, Cu), in which complete M(II)(2)S(4)Cu(I)(4) core structures were obtained as the major, and, in the case of Cu(II)(N(2)S(2)), the incomplete Cu(II)(2)S(4)Cu(I)(3) as a minor, product. The full Ni(2)S(4)Fe(4) cluster has not yet been realized for Fe = Fe(NO)(2). Computational analysis of the NiFe-heterobimetallic complex addresses structural issues including a ∠Ni-S-Fe of 90° in the bimetallic complex.


Assuntos
Ferro/química , Lactonas/química , Níquel/química , Óxidos de Nitrogênio/química , Compostos Organometálicos/química , Ligantes , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Estereoisomerismo
6.
Inorg Chem ; 48(7): 2780-92, 2009 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-19253985

RESUMO

The discovery of the metallopeptide Ni(Cysteine-Glycine-Cysteine)(2-), Ni(CGC)(2-), in the A-cluster active site of Acetyl CoA Synthase has prompted the synthesis of many small molecule models which employ M(N(2)S(2)) complexes as metalloligands. In vitro studies have shown that nickel incorporates into the N(2)S(2) binding pocket even when copper is in the enzyme growth medium, while copper is preferentially taken up in the proximal site, displacing the catalytically active nickel. (Darnault, C.; Volbeda, A.; Kim, E.J.; Legrand, P.; Vernede, X.; Lindahl, P.A.; Fontecilla-Camps, J.C. Nat. Struct. Biol. 2003, 10, 271-279.) The work herein has been designed to address the chemical viability of copper(II) within the tripeptide N(2)S(2) ligand set. To this end, a series of CuN(2)S(2)(2-) complexes, the resin-bound, O-Cu(CGC)(2-) (A) and free Cu(CGC)(2-) (B) complexes, as well as Cu(ema)(2-) (C) and Cu(emi)(2-) (D) dianions, have been characterized by UV-vis, electron paramagnetic resonance (EPR), and electrospray ionization mass spectrometry (ESI-MS) spectroscopies, cyclic voltammetry (CV), and, where appropriate, X-ray diffraction studies, and compared to the Ni(II) congeners. EPR spectroscopic results have indicated that, in frozen N,N-dimethylformamide (DMF) solution, the copper complexes are distorted square planar structures with nitrogen and sulfur donors. This is consistent with X-ray diffraction measurements which also show copper(II) in a distorted square planar environment that is bereft of CuN(2)S(2)(2-) intermolecular interactions. Density-functional theory (DFT) calculations resulted in optimized structures that are consistent with crystallographic data and indicated highest occupied molecular orbital (HOMO)-singly occupied molecular orbital (SOMO) gaps of 5.01 and 4.68 eV for C and D, respectively. Optimized structures of Ni(ema)(2-) and Ni(emi)(2-) share the same basic characteristics as the copper(II) congeners. Electrochemical characterization of C and D resulted in a reversible Cu(III/II) couple at -1.20 V and - 1.40 V, respectively. Reactivity studies with Rh(CO)(2)(+) show similar donor capabilities for complexes A-D. Analysis of A shows that transmetalation does not occur. From competitive metal uptake studies on immobilized tripeptide it is concluded that the N(2)S(2)(4-) ligating unit has a slight preference for Cu(2+) over Ni(2+) and that the biosynthetic pathway responsible for constructing the distal site of ACS must be selective for nickel insertion or copper exclusion, or both.


Assuntos
Acetato-CoA Ligase/química , Metaloproteínas/química , Níquel/química , Oligopeptídeos/química , Sítios de Ligação , Simulação por Computador , Cisteína/química , Glicina/química , Modelos Químicos , Modelos Moleculares
7.
Inorg Chem ; 46(18): 7536-44, 2007 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-17685511

RESUMO

The dianionic NiN2S2 complex, Ni(ema)2-, ema=N,N'-ethylenebis-2-mercaptoacetamide, known as a reasonable model of the tripeptide complex Ni(CGC)2- (C=cysteine; G=glycine) with respect to the two carboxyamido nitrogens and cis-dithiolates in a (N2S2)4- ligand scaffold as found in acetyl CoA synthase, has been explored for S-based reactivity toward oxygenation and alkylation. The isolation and structural characterization of a sulfinato species, [Et4N]2[Ni(ema).O2], prepared through a unique direct reaction of molecular O2 with crystalline [Et4N]2[Ni(ema)] is described. Reaction of [Et4N]2[Ni(ema)] with Br(CH2)3Br yields a neutral N2S2 macrocyclic complex shown by DFT computations and electrostatic-potential mapping to be opposite in electron distribution from the neutral NiN2S2 complexes in which the anionic charge is localized on sulfur.


Assuntos
Compostos Organometálicos/química , Enxofre/química , Acetamidas/química , Ânions/química , Simulação por Computador , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Etilenos/química , Modelos Moleculares , Conformação Molecular , Níquel/química , Oxigênio/química , Compostos de Amônio Quaternário/química , Eletricidade Estática , Compostos de Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...